220 research outputs found

    Variational image regularization with Euler's elastica using a discrete gradient scheme

    Full text link
    This paper concerns an optimization algorithm for unconstrained non-convex problems where the objective function has sparse connections between the unknowns. The algorithm is based on applying a dissipation preserving numerical integrator, the Itoh--Abe discrete gradient scheme, to the gradient flow of an objective function, guaranteeing energy decrease regardless of step size. We introduce the algorithm, prove a convergence rate estimate for non-convex problems with Lipschitz continuous gradients, and show an improved convergence rate if the objective function has sparse connections between unknowns. The algorithm is presented in serial and parallel versions. Numerical tests show its use in Euler's elastica regularized imaging problems and its convergence rate and compare the execution time of the method to that of the iPiano algorithm and the gradient descent and Heavy-ball algorithms

    Domain decomposition methods for compressed sensing

    Get PDF
    We present several domain decomposition algorithms for sequential and parallel minimization of functionals formed by a discrepancy term with respect to data and total variation constraints. The convergence properties of the algorithms are analyzed. We provide several numerical experiments, showing the successful application of the algorithms for the restoration 1D and 2D signals in interpolation/inpainting problems respectively, and in a compressed sensing problem, for recovering piecewise constant medical-type images from partial Fourier ensembles.Comment: 4 page
    corecore